Home
Search results “Chemical bonds and their properties”
Atomic Hook-Ups - Types of Chemical Bonds: Crash Course Chemistry #22
 
09:46
Atoms are a lot like us - we call their relationships "bonds," and there are many different types. Each kind of atomic relationship requires a different type of energy, but they all do best when they settle into the lowest stress situation possible. The nature of the bond between atoms is related to the distance between them and, like people, it also depends on how positive or negative they are. Unlike with human relationships, we can analyze exactly what makes chemical relationships work, and that's what this episode is all about. If you are paying attention, you will learn that chemical bonds form in order to minimize the energy difference between two atoms or ions; that those chemical bonds may be covalent if atoms share electrons, and that covalent bonds can share those electrons evenly or unevenly; that bonds can also be ionic if the electrons are transferred instead of shared: and how to calculate the energy transferred in an ionic bond using Coulomb's Law. -- Table of Contents Bonds Minimize Energy 01:38 Covalent Bonds 03:18 Ionic Bonds 05:37 Coulomb's Law 05:51 -- Want to find Crash Course elsewhere on the internet? Facebook - http://www.facebook.com/YouTubeCrashCourse Twitter - http://www.twitter.com/TheCrashCourse Tumblr - http://thecrashcourse.tumblr.com Support CrashCourse on Subbable: http://subbable.com/crashcourse
Views: 1818868 CrashCourse
Ionic, covalent, and metallic bonds | Chemical bonds | Chemistry | Khan Academy
 
13:22
Introduction to ionic, covalent, polar covalent and metallic bonds. Watch the next lesson: https://www.khanacademy.org/science/chemistry/chemical-bonds/types-chemical-bonds/v/electronegativity-trends?utm_source=YT&utm_medium=Desc&utm_campaign=chemistry Missed the previous lesson? https://www.khanacademy.org/science/chemistry/periodic-table/periodic-table-trends-bonding/v/metallic-nature-trends?utm_source=YT&utm_medium=Desc&utm_campaign=chemistry Chemistry on Khan Academy: Did you know that everything is made out of chemicals? Chemistry is the study of matter: its composition, properties, and reactivity. This material roughly covers a first-year high school or college course, and a good understanding of algebra is helpful. About Khan Academy: Khan Academy is a nonprofit with a mission to provide a free, world-class education for anyone, anywhere. We believe learners of all ages should have unlimited access to free educational content they can master at their own pace. We use intelligent software, deep data analytics and intuitive user interfaces to help students and teachers around the world. Our resources cover preschool through early college education, including math, biology, chemistry, physics, economics, finance, history, grammar and more. We offer free personalized SAT test prep in partnership with the test developer, the College Board. Khan Academy has been translated into dozens of languages, and 100 million people use our platform worldwide every year. For more information, visit www.khanacademy.org, join us on Facebook or follow us on Twitter at @khanacademy. And remember, you can learn anything. For free. For everyone. Forever. #YouCanLearnAnything Subscribe to Khan Academy’s Chemistry channel: https://www.youtube.com/channel/UCyEot66LrwWFEMONvrIBh3A?sub_confirmation=1 Subscribe to Khan Academy: https://www.youtube.com/subscription_center?add_user=khanacademy
Views: 2362078 Khan Academy
Ionic and Covalent Bonds, Hydrogen Bonds, van der Waals - 4 types of Chemical Bonds in Biology
 
08:50
There are four types of chemical bonds essential for life to exist: Ionic Bonds, Covalent Bonds, Hydrogen Bonds, and van der Waals interactions. We need all of these different kinds of bonds to play various roles in biochemical interactions. These bonds vary in their strengths. In Chemistry, we think of Ionic Bonds and Covalent bonds as having an overlapping range of strengths. But remember, in biochemistry, everything is happening in the context of water. This means Ionic bonds tend to dissociate in water. Thus, we will think of these bonds in the following order (strongest to weakest): Covalent, Ionic, Hydrogen, and van der Waals. Also note that in Chemistry, the weakest bonds are more commonly referred to as “dispersion forces.” Related Chemistry video: Ionic Bonds vs Covalent Bonds http://bit.ly/2cUG6C8 Our series on Biology is aimed at the first-year college level, including pre-med students. These videos should also be helpful for students in challenging high school biology courses. Perfect for preparing for the AP Biology exam or the Biology SAT. Also appropriate for advanced homeschoolers. You can also follow along if you are just curious, and would like to know more about this fascinating subject. ***** Our current biology textbook recommendation is Campbell Biology from Pearson. 10th edition Amazon Link: http://amzn.to/2mahQTi 11th edition Amazon Link: http://amzn.to/2m7xU6w Amazon Used Textbooks - Save up to 90% http://amzn.to/2pllk4B For lighter reading, we recommend: I Contain Multitudes: The Microbes Within Us and a Grander View of Life by Ed Yong http://amzn.to/2pLOddQ Lab Girl by Hope Jahren http://amzn.to/2oMolPg ***** This video was made possible by the generous donations of our Patrons on Patreon. We dedicate this video to our VIP Patron, Vishal Shah. We’re so thankful for your support! ***** Please Subscribe so you'll hear about our newest videos! http://bit.ly/1ixuu9W If you found this video helpful, please give it a "thumbs up" and share it with your friends! If you'd like to support more great educational videos from Socratica, please consider becoming our Patron on Patreon! https://www.patreon.com/socratica ***** Written and Produced by Kimberly Hatch Harrison About our instructor: Kimberly Hatch Harrison received degrees in Biology and English Literature from Caltech before working in pharmaceuticals research, developing drugs for autoimmune disorders. She then continued her studies in Molecular Biology (focusing on Immunology and Neurobiology) at Princeton University, where she began teaching as a graduate student. Her success in teaching convinced her to leave the glamorous world of biology research and turn to teaching full-time, accepting a position at an exclusive prep school, where she taught biology and chemistry for eight years. She is now the head writer and producer of Socratica Studios. ****** Creative Commons Picture Credits: Salt crystals https://en.wikipedia.org/wiki/File:Halit-Kristalle.jpg Author: W.J. Pilsak Hydrogen Bonding in water https://en.wikipedia.org/wiki/File:3D_model_hydrogen_bonds_in_water.svg Author: Qwerter Products in this video: Preparing for the Biology AP* Exam (School Edition) (Pearson Education Test Prep) - http://amzn.to/2qJVbxm Cracking the AP Biology Exam, 2017 Edition: Proven Techniques to Help You Score a 5 (College Test Preparation) - http://amzn.to/2qB3NsZ Cracking the SAT Biology E/M Subject Test, 15th Edition (College Test Preparation) - http://amzn.to/2qJIfHN
Views: 45453 Socratica
What Are Covalent Bonds | Chemistry for All | FuseSchool
 
05:53
Learn the basics about covalent bonds, when learning about properties of matter. When similar atoms react, like non-metals combining with other non-metals, they share electrons. This is covalent bonding. Non-metals have shells of electrons that are normally half or more than half full of electrons. Since they have a strong attraction for a few additional electrons, it is energetically unfavourable for any of them to lose electrons, so they share electrons by overlapping orbitals. This makes a bonding orbital, or covalent bond, that contains two or more electrons. Covalent bonds can be represented by a dot and cross diagram. These diagrams show only the valence electrons. Covalent bonds are directional, which means they are in a fixed position. The overlap between orbitals mean that the atoms in covalent bonds are very close, and make covalent bonds strong. There are two kinds of covalent structure - small molecules, like water, and giant compounds, like diamond. The electrons in the bonds are evenly shared, which means the bonds are not polarised; there is little attraction between molecules, and forces between molecules are weak. Compounds made from small covalent molecules have low melting and boiling points and are volatile. They also don’t conduct electricity. Carbon and silicon tend to form giant covalent compounds. These bond in the same way, but instead of forming small molecules with one or two bonds, they form four, make up huge lattices or chains of many many linked up atoms. Diamond is a common example, and is made up of Carbon. These compounds have very high melting and boiling points because you have to break covalent bonds rather than intermolecular forces to make them free enough to act like liquids or gases. The covalent bonds hold them rigidly in place in the giant lattice. SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. JOIN our platform at www.fuseschool.org This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind The Fuse School. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
Covalent Bonding | #aumsum
 
06:11
Covalent Bonding. Noble gases have complete outer electron shells, which make them stable. The coming together and sharing of electron pairs leads to the formation of a chemical bond known as a covalent bond. Two chlorine atoms come together and share their electrons to form a molecule of chlorine. In this way, each atom will have eight electrons in its valence shell. As a single pair of electrons is shared between them, the bond is known as a single covalent bond. A single covalent bond is represented by a single dash between the atoms. When two oxygen atoms come together, they each share 2 electrons to complete their octets. Since they share two pairs of electrons, there is a double bond between the oxygen atoms. Similarly, Nitrogen atoms share a triple covalent bond to form a molecule of Nitrogen.
Views: 1463471 It's AumSum Time
The Chemical Bond: Covalent vs. Ionic and Polar vs. Nonpolar
 
03:33
Ionic Bond, Covalent Bond, James Bond, so many bonds! What dictates which kind of bond will form? Electronegativity values, of course. Let's go through each type and what they're all about. To support this channel and keep up on STEM news at the same time, click on the link below and subscribe to this FREE newsletter: http://www.jdoqocy.com/click-9021241-13591026 Subscribe: http://bit.ly/ProfDaveSubscribe [email protected] http://patreon.com/ProfessorDaveExplains http://professordaveexplains.com http://facebook.com/ProfessorDaveExpl... http://twitter.com/DaveExplains General Chemistry Tutorials: http://bit.ly/ProfDaveGenChem Organic Chemistry Tutorials: http://bit.ly/ProfDaveOrgChem Biochemistry Tutorials: http://bit.ly/ProfDaveBiochem Classical Physics Tutorials: http://bit.ly/ProfDavePhysics1 Modern Physics Tutorials: http://bit.ly/ProfDavePhysics2 Mathematics Tutorials: http://bit.ly/ProfDaveMaths Biology Tutorials: http://bit.ly/ProfDaveBio American History Tutorials: http://bit.ly/ProfDaveAmericanHistory
Views: 296399 Professor Dave Explains
Types of Bond: Ionic, Covalent, Coordinate, and Hydrogen Bonds
 
02:42
Types of Bond in chemistry are explained in this video. The explanation of chemical bonding and different types of chemical bonds that are explained in this video include ionic bonds, covalent bonds, coordinate bonds, and hydrogen bonds. Ionic Bond: Ionic bonding is seen when two atoms form a bond by donating or accepting electrons. In this type of chemical bonding, there is an electrostatic attraction between the ions which are oppositely charged. Covalent Bond: In covalent bonding, two atoms share electrons to be able to attain the configuration of their nearest noble gas. It is also called a molecular bond and is characterized by electrons sharing between atoms. Coordinate bond: In the case of coordinate bonding, both the electrons that form the bond come from the same atom. Coordinate bond is also known as a coordinate covalent bond or a dative covalent bond. Hydrogen Bond: Hydrogen bonding is a type of electrostatic attraction and is seen when a hydrogen atom which is bonded to a highly electronegative atom (like Nitrogen, Oxygen, Fluorine) comes close to another adjacent atom having a lone pair of electrons. Get more information about the types of bond here- https://byjus.com/chemistry/ionic-covalent-and-coordinate-bond/ Thank you for watching. If you liked this video, please subscribe to our channel and press the like button. Click on the bell icon to turn on notifications and you will never miss out on our latest videos! Explore more content like this on our channel. Still have a doubt about this topic? Or Have an idea/ suggestion for a new video? Please comment below.
Views: 35062 BYJU'S
Oxygen, Nitrogen & Carbon and Covalent Chemical Bonds
 
17:51
This chemistry tutorial video explains how oxygen, nitrogen & carbon make covalent chemical bonds to school & science students . The video shows how the protons and electron shells, and especially the number of electrons in the outer shells determine how many bonds oxygen, nitrogen and carbon can make. Four important molecules, water H2O, ammonia NH3, and methane CH4 are discussed. Subscribe to watch more online chemistry courses & science videos: http://www.youtube.com/channel/UCiX8pAYWBppIbtUZTfGnRJw?sub_confirmation=1 About Atomic School: Atomic School supports the teaching of Atomic Theory to primary school & science students . We provide lesson plans, hands-on classroom resources, demonstration equipment, quizzes and a Teacher's Manual to primary school teachers. Animated videos that clearly explain the scientific ideas supports learning by both teachers and students. As a teacher, you don't have to look anywhere else to implement this program. Our work has been verified by science education researchers at the University of Southern Queensland, Dr Jenny Donovan and Dr Carole Haeusler, who confirm that primary students are capable of learning much more complex scientific concepts than previously thought, and crucially, that they love it. Students run to class! The program has been trialed in Australian schools as well as schools in the Philippines, Iran and India. It is conducted as holiday workshops at the Australian Nuclear Science and Technology Organisation, the Queensland Museum as well as the World Science Festival. It has attracted wide media interest, including TV, radio and print, and the research data has been presented at prestigious American Education Research Association and Australian Science Education Research Association conferences. Atomic Theory underlies all the other sciences- genetics, electronics, nanotechnology, engineering and astronomy- so an early understanding will set them up for a more successful learning sequence for all their science subjects, and support their mastery of mathematics as well. We also have extension programs that cover Biology, Physics and Astronomy to an equal depth. About Ian Stuart (Email: [email protected]): The founder of Atomic School, Ian Stuart, taught Chemistry and Physics for 25 years at senior levels before he realized that his 8-year old son, Tom, could understand Atomic Theory at a much deeper level than he expected. After visiting Tom's class at school, he discovered that his peers could also grasp the abstract scientific concepts, as well as apply it usefully to the real world. Ian then developed a program to teach the advanced concepts of high school Chemistry, Physics and Biology to students 10 years younger than they normally would. He found that this engaged their interest in modern science early, and sustained it through to high school and beyond. It also sets them up for future success in their academic and career paths. Ian has a Bachelor's Degree in Chemistry from the University of Queensland and a Master's degree in Electrochemistry from the University of Melbourne. Connect with Atomic School on social media: http://facebook.com/AtomicSchool http://twitter.com/AtomicSchools http://instagram.com/AtomicSchools Video transcript:
Views: 155303 AtomicSchool
Ionic Bonding Introduction
 
07:20
To see all my Chemistry videos, check out http://socratic.org/chemistry This video is an introduction to ionic bonding, which is one type of chemical bonding. Ionic bonds hold together metal and nonmetal atoms. In ionic bonding, electrons are transferred from a metal atom to a nonmetal atom, creating ions. These ions have opposite charge, so they stick together. Creative Commons Attribution-NonCommercial CC BY-NC
Views: 1094290 Tyler DeWitt
Sigma and Pi Bonds Explained, Basic Introduction, Chemistry
 
06:17
This chemistry video tutorial provides a basic introduction into sigma and pi bonds. It explains how to calculate the number of sigma and pi bonds in a molecule given its lewis structure. It contains plenty of examples and practice problems. New Chemistry Video Playlist: https://www.youtube.com/watch?v=bka20Q9TN6M&t=25s&list=PL0o_zxa4K1BWziAvOKdqsMFSB_MyyLAqS&index=1 Access to Premium Videos: https://www.patreon.com/MathScienceTutor Facebook: https://www.facebook.com/MathScienceTutoring/
Metallic Bond and Properties of Metals |Types of Chemical Bonds|
 
03:35
In this video you can learn about concept and formation of metallic bonds found in metals... You can also understand the different properties of metals such as malleability and ductility... If u want to watch videos on other types of Chemical Bonds then links are given below : For Ionic bond https://youtu.be/ONyXn4y5gfE For Covalent bond https://youtu.be/ktrhtfWM8dU For Co-ordinate Covalent bond https://youtu.be/1roC6g8VdwQ
Views: 5918 I.A Chemistry Academy
What are metallic bonds? | Chemistry for All | The Fuse School
 
04:14
Learn the basics about particles in a metal, that are held together by metallic bonds.What are metallic bonds? Find out more in this video! This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected] SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind The Fuse School. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool
Bonding Models and Lewis Structures: Crash Course Chemistry #24
 
11:38
Models are great, except they're also usually inaccurate. In this episode of Crash Course Chemistry, Hank discusses why we need models in the world and how we can learn from them... even when they're almost completely wrong. Plus, Lewis Structures! -- Table of Contents Models :06 Linus Pauling & The Bonding Model 9:16 Lewis Dot Structures 4:27 Ionic Bonds 5:30 Covalent Bonds 6:10 Double Bonds 7:17 Triple Bonds 8:14 -- Want to find Crash Course elsewhere on the internet? Facebook - http://www.facebook.com/YouTubeCrashCourse Twitter - http://www.twitter.com/TheCrashCourse Tumblr - http://thecrashcourse.tumblr.com Support CrashCourse on Subbable: http://subbable.com/crashcourse
Views: 1548272 CrashCourse
GCSE Science Chemistry (9-1) Covalent bonding 1
 
04:59
Find my revision workbooks here: https://www.freesciencelessons.co.uk/workbooks/shop/ This video is for the new GCSE specifications (levels 1-9) for all exam boards. In this video, we start looking at covalent bonding. We look at how the atoms are covalently bonded in a hydrogen molecule, a chlorine molecule and in a molecule of hydrogen chloride.
Views: 227107 Freesciencelessons
Chemistry: Ionic Bonds vs Covalent Bonds (Which is STRONGER?)
 
05:36
Chemistry: Ionic Bonds vs Covalent Bonds (which is stronger?) Ionic Bonds and Covalent bonds are both considered STRONG intramolecular forces. But do you know which is stronger? You'd think this was a straightforward question. But there's more to it! Each of these bonds has a range of strengths. In this video, we'll discuss how the strength of Ionic Bonds and Covalent bonds are measured so you can compare two chemical bonds. You can click on the links below to jump to sections in the lesson: 0:25 Definitions of ionic and covalent bonds 1:45 Measuring the strength of ionic bonds (lattice energy) 3:08 Some typical lattice energies of ionic bonds 3:50 Measuring the strength of covalent bonds (bond enthalpy) 4:19 Some typical bond enthalpies of covalent bonds Here are our more in-depth videos about the individual bonds. Ionic Bonds: http://bit.ly/1UWsJRL Covalent Bonds: http://bit.ly/1HYZmow3 Metallic Bonds: http://bit.ly/1UoASiZ Intermolecular Forces: http://bit.ly/2xAnoMt ///////////////////////// Our Periodic Table app is FREE in the Google Play store! http://goo.gl/yg9mAF Don't miss our other chemistry videos: https://www.youtube.com/watch?v=aQw9G... Please Subscribe so you'll hear about our newest videos! http://bit.ly/1ixuu9W If you found this video helpful, please give it a "thumbs up" and share it with your friends! ///////////////////////// To support more videos from Socratica, visit Socratica Patreon https://www.patreon.com/socratica http://bit.ly/29gJAyg Socratica Paypal https://www.paypal.me/socratica We also accept Bitcoin! :) Our address is: 1EttYyGwJmpy9bLY2UcmEqMJuBfaZ1HdG9 ///////////////////////// We recommend the following books: Brown and LeMay Chemistry: The Central Science 13th edition: http://amzn.to/2n5SXtB 14th edition: http://amzn.to/2mHk79f McGraw/Hill Chemistry by Chang & Goldsby http://amzn.to/2mO2khf Uncle Tungsten: Memories of a Chemical Boyhood by Oliver Sacks http://amzn.to/2nlaJp0 Napoleon's Buttons: How 17 Molecules Changed History http://amzn.to/2lJZzO3 ///////////////////////// Written and Produced by Kimberly Hatch Harrison About our instructor: Kimberly Hatch Harrison received degrees in Biology and English Literature from Caltech before working in pharmaceuticals research, developing drugs for autoimmune disorders. She then continued her studies in Molecular Biology (focusing on Immunology and Neurobiology) at Princeton University, where she began teaching as a graduate student. Her success in teaching convinced her to leave the glamorous world of biology research and turn to teaching full-time. Kimberly taught AP Biology and Chemistry at an exclusive prep school for eight years. She is now the head writer and producer of Socratica Studios. Creative Commons Picture Credits: Butter http://en.wikipedia.org/wiki/File:Western-pack-butter.jpg Author: Steve Karg, aka Skarg sodium chloride 3D lattice http://en.wikipedia.org/wiki/File:NaC... Author: Raj6
Views: 47066 Socratica
How Does Water Bond - Covalent Bonds | Chemistry for All | FuseSchool
 
02:40
Learn the basics about the covalent bonding of water, when learning about covalent bonding within properties of matter. Water is made from one oxygen atom and two hydrogens. The oxygen has 6 electrons in its outer shell, but it really wants to have 8 to have a full shell. The hydrogens have one outer shell electron, but want to have two. The atoms share their electrons, forming covalent bonds. So all three atoms have full outer shells, and create a water molecule. Water has two covalent bonds. In water, the bonding electrons spend most of their time nearer the oxygen atom, because it is more ELECTRONEGATIVE. This means that it is electron withdrawing. As the negatively charged electrons are nearer the oxygen atom, the oxygen atom becomes a little bit negative itself, while the hydrogens become a little positive. This is called delta positive and delta negative. Water doesn’t just have any old covalent bonds; it has what we call POLAR COVALENT bonds and is a POLAR molecule. This is really important as it affects how water behaves and reacts with other elements. SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. JOIN our platform at www.fuseschool.org This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind The Fuse School. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
Electronegativity and bonding | Chemical bonds | Chemistry | Khan Academy
 
11:39
Electronegativity differences in bonding using Pauling scale. Using differences in electronegativity to classify bonds as covalent, polar covalent, or ionic. Watch the next lesson: https://www.khanacademy.org/science/chemistry/chemical-bonds/types-chemical-bonds/v/metallic-nature-trends?utm_source=YT&utm_medium=Desc&utm_campaign=chemistry Missed the previous lesson? https://www.khanacademy.org/science/chemistry/chemical-bonds/types-chemical-bonds/v/electronegativity-trends?utm_source=YT&utm_medium=Desc&utm_campaign=chemistry Chemistry on Khan Academy: Did you know that everything is made out of chemicals? Chemistry is the study of matter: its composition, properties, and reactivity. This material roughly covers a first-year high school or college course, and a good understanding of algebra is helpful. About Khan Academy: Khan Academy offers practice exercises, instructional videos, and a personalized learning dashboard that empower learners to study at their own pace in and outside of the classroom. We tackle math, science, computer programming, history, art history, economics, and more. Our math missions guide learners from kindergarten to calculus using state-of-the-art, adaptive technology that identifies strengths and learning gaps. We've also partnered with institutions like NASA, The Museum of Modern Art, The California Academy of Sciences, and MIT to offer specialized content. For free. For everyone. Forever. #YouCanLearnAnything Subscribe to Khan Academy’s Chemistry channel: https://www.youtube.com/channel/UCyEot66LrwWFEMONvrIBh3A?sub_confirmation=1 Subscribe to Khan Academy: https://www.youtube.com/subscription_center?add_user=khanacademy
Ionic vs. Molecular
 
08:52
To see all my Chemistry videos, check out http://socratic.org/chemistry How can you tell the difference between compounds that are ionic and molecular (also known as covalent)? It has to do with the elements that make them up: ionic compounds are made of metals and nonmetals, and molecular (or covalent) compounds are made of nonmetals. We'll learn how they bond differently: in covalent compounds, the atoms share electrons, and in ion compounds, atoms steal electrons and then opposite charges attract. Ionic and molecular (covalent) compounds also look different at the microscopic level: covalent and molecular compounds exist in molecules, while ionic compounds are organized in lattice structures.
Views: 746547 Tyler DeWitt
Minerals and Chemical Bonds
 
09:01
Chemical bonds and their influence on the diagnostic characteristics of minerals
Views: 436 joanna hodge
Chemical Bonds: Covalent vs. Ionic
 
08:57
Mr. Andersen shows you how to determine if a bond is nonpolar covalent, polar covalent, or ionc. Intro Music Atribution Title: I4dsong_loop_main.wav Artist: CosmicD Link to sound: http://www.freesound.org/people/CosmicD/sounds/72556/ Creative Commons Atribution License
Views: 632055 Bozeman Science
Coordinate Bond
 
09:15
DeltaStep is a social initiative by graduates of IIM-Ahmedabad, IIM-Bangalore, IIT-Kharagpur, ISI-Kolkata, Columbia University (USA), NTU (Singapore) and other leading institutes. At DeltaStep, we understand that just like every child has a unique face, a unique fingerprint; he has a unique learning ability as well. Hence we have built an intelligent adaptive learning system that delivers a tailor-made learning solution and helps a student to learn at his own pace because when it comes to learning, one size does not fit all. Learn from 1000s of such interesting videos, practice from more than 1,00,000 questions, learn complex concepts through games, take timed tests, get detailed reports & in-depth analysis even via SMS and Whatsapp and many more amazing features. Class wise mapping available for all leading boards including ICSE and CBSE. Create your personal learning account. Register for FREE at www.deltastep.com.
Views: 178675 DeltaStep
Bond Strength and Bond Length
 
14:49
This organic chemistry video tutorial provides a basic introduction into bond strength and bond length of single bonds, double bonds, and triple bonds. It also discusses the relative strength of sigma bonds and pi bonds. Subscribe: https://www.youtube.com/channel/UCEWpbFLzoYGPfuWUMFPSaoA?sub_confirmation=1 Access to Premium Videos: https://www.patreon.com/MathScienceTutor https://www.facebook.com/MathScienceTutoring/ New Organic Chemistry Playlist https://www.youtube.com/watch?v=6unef5Hz6SU&index=1&list=PL0o_zxa4K1BXP7TUO7656wg0uF1xYnwgm&t=0s
Polar & Non-Polar Molecules: Crash Course Chemistry #23
 
10:46
*** PLEASE WATCH WITH ANNOTATIONS ON! SOME INACCURACIES IN GRAPHICS ARE NOTED AND CORRECTED IN ANNOTATIONS. THANKS! *** Molecules come in infinite varieties, so in order to help the complicated chemical world make a little more sense, we classify and categorize them. One of the most important of those classifications is whether a molecule is polar or non-polar, which describes a kind of symmetry - not just of the molecule, but of the charge. In this edition of Crash Course Chemistry, Hank comes out for Team Polar, and describes why these molecules are so interesting to him. You'll learn that molecules need to have both charge asymmetry and geometric asymmetry to be polar, and that charge asymmetry is caused by a difference in electronegativities. You'll also learn how to notate a dipole moment (or charge separation) of a molecule, the physical mechanism behind like dissolves like, and why water is so dang good at fostering life on Earth. -- Table of Contents Charge Assymetry & Geometric Asymmetry 01:33 Difference in Electronegatives 01:49 Hank is Team Polar 00:33 Dipole Moment 03:49 Charge Separation of a Molecule 04:12 Like Dissolves Like 04:41 Water is Awesome 05:10 -- Want to find Crash Course elsewhere on the internet? Facebook - http://www.facebook.com/YouTubeCrashCourse Twitter - http://www.twitter.com/TheCrashCourse Tumblr - http://thecrashcourse.tumblr.com Support CrashCourse on Subbable: http://subbable.com/crashcourse
Views: 2533246 CrashCourse
Polar and NonPolar Molecules: How To Tell If a Molecule is Polar or Nonpolar
 
08:21
This video provides a fast way for you to determine if a molecule is polar or nonpolar. It provides examples so you can quickly distinguish nonpolar molecules from those that are polar. General Chemistry Video Playlist: https://www.youtube.com/watch?v=bka20Q9TN6M&list=PL0o_zxa4K1BV-uX6wXQgyqZXvRd0tUUV0&index=3 Access to Premium Videos: https://www.patreon.com/MathScienceTutor Facebook: https://www.facebook.com/MathScienceTutoring/ Here is a list of molecules that are classified as polar or nonpolar: N2, O2, Cl2, F2, H2 He, Ne, Ar, Xe CH4, C2H6, CH2=CH2, CF4, SBr6, BH3, CO2, PCl5, H2O, NH3, HF, CH3OH, CH3NH2, CH3COOH OCS, CH3F, SO2
The CHEMICAL BONDS Song  - NOW WITH CLOSED CAPTION SO YOU CAN SING ALONG!  Mr. Edmonds  -
 
03:33
This song is about the formation of the two types of chemical bonds: IONIC BONDS and COVALENT BONDS. The tune is to "Dancing Queen" by Abba (the song from their album, Arrival). After looking for several song melodies, this one fit the words the best. Many thanks to my current and former science students for their encouragement! Document with words is in "Docs" section for dsecms on Teachertube, OR BELOW: The Chemical Bonds Song -- to the tune of "Dancing Queen" by Abba from the album Arrival. Words by Doug Edmonds. Oooh yeah, Ionic bonds ... covalent bonds ... both of them chemical bonds. How are they made? What's the dif-ference? Watch you'll see! First we'll start with ionic bonds, A metal and nonmetal are involved. The metal gives over electrons, the nonmetal ... it receives. The atoms become IONS! Metals might have 1,2 or 3 Electrons for the nonmetal to receive It all depends on what's needed, to make the number 8 For the nonmetals' outer shell. AND IF IT HAPPENS FOR THEM ... They both become IONS ...... CHARGED ATOMS .... They become IONS! The metal's positive, the nonmetal's negative, They become IONS, oh yeah. The metal's plus, the nonmetal minus, and opposites they do attract. So what you get, when they come together, is an IONIC BOND. So what about those covalent bonds? It's not about loss and gain of electrons. Valence electrons they are shared, to complete the outer shells Of the nonmetals set to bond. IT'S WHEN NONMETALS JOIN ... to make covalent bonds With shared electrons ,,,, they're covalent bonds. Not a transfer, instead they share valence electrons, oh yeah! Ionic bonds ... covalent bonds ... both of them chemical bonds. How are they made? What's the dif-ference? Play the song again ! Ionic bonds, covalent bonds ..... both chemical bonds!
Views: 217164 dsecms
Metallic Bonding & Properties Tutorial [Now with Animations!] | The Crash Chemistry Academy
 
09:10
electron sea model of bonding is explained and used to explain metallic properties such as malleability, conductivity, and luster CC Academy videos are easy 101 crash course tutorials for step by step Chemistry help on your chemistry homework, problems, and experiments. Check out our best lessons: - Solution Stoichiometry Tutorial: How to use Molarity - Stoichiometry - Quantum Numbers - Rutherford's Gold Foil Experiment, Explained - Covalent Bonding Tutorial: Covalent vs. Ionic bonds - Metallic Bonding and Metallic Properties Explained: Electron Sea Model - Effective Nuclear Charge, Shielding, and Periodic Properties - Electron Configuration Tutorial + How to Derive Configurations from Periodic Table - Orbitals, the Basics: Atomic Orbital Tutorial — probability, shapes, energy - Metric Prefix Conversions Tutorial - Gas Law Practice Problems: Boyle's Law, Charles Law, Gay Lussac's, Combined Gas Law —More on Metallic Bonds | Wikipedia— "Metallic bonding is the force of attraction between valence electrons and the metal ions. It is the sharing of many detached electrons between many positive ions, where the electrons act as a "glue" giving the substance a definite structure. The electrons and the positive ions in the metal have a strong attractive force between them. Therefore, metals often have high melting or boiling points. The principle is similar to that of ionic bonds. The metallic bond causes many of the traits of metals, such as strength, malleability, ductility, luster, conduction of heat and electricity. Because the electrons move freely, the metal has some electrical conductivity. It allows the energy to pass quickly through the electrons, generating a current. Metals conduct heat for the same reason: the free electrons can transfer the energy at a faster rate than other substances with electrons that are fixed into position. There also are few non-metals which conduct electricity: graphite (because, like metals, it has free electrons), and ionic compounds that are molten or dissolved in water, which have free moving ions. Metal bonds have at least one valence electron which they do not share with neighboring atoms, and they do not lose electrons to form ions. Instead the outer energy levels (atomic orbitals) of the metal atoms overlap. They are similar to covalent bonds.[4] Not all metals exhibit metallic bonding. For example, the mercurous ion (Hg2+ 2) forms covalent metal-metal bonds. An alloy is a solution of metals." "Metallic bond." Wikipedia, The Free Encyclopedia. 4 Feb 2016, 17:37 UTC. 27 May 2016, 19:20
Naming Covalent Molecular Compounds
 
10:46
We'll learn how to write names for compounds that are made of two nonmetals, sometimes called binary compounds. Binary compounds made of two nonmetals are called covalent or molecular because the elements are held together with covalent bonds, and they make molecules. In order to name them, we use the element name for the first element in the chemical formula, and then we use the -ide name for the second name in the chemical formula. Greek prefixes to show the number of atoms of each element, and these are put in front of the element names.
Views: 739259 Tyler DeWitt
Chemical Bonding Introduction: Hydrogen Molecule, Covalent Bond & Noble Gases
 
07:21
Chemical bonding introduction video shows how covalent bond means 2 hydrogen atoms can stick together to form a hydrogen molecule, H2. The video also explains why helium cannot form bonds and hence is called a noble gas. Subscribe to watch more online chemistry courses & science videos: http://www.youtube.com/channel/UCiX8pAYWBppIbtUZTfGnRJw?sub_confirmation=1 About Atomic School: Atomic School supports the teaching of Atomic Theory to primary school & science students . We provide lesson plans, hands-on classroom resources, demonstration equipment, quizzes and a Teacher's Manual to primary school teachers. Animated videos that clearly explain the scientific ideas supports learning by both teachers and students. As a teacher, you don't have to look anywhere else to implement this program. Our work has been verified by science education researchers at the University of Southern Queensland, Dr Jenny Donovan and Dr Carole Haeusler, who confirm that primary students are capable of learning much more complex scientific concepts than previously thought, and crucially, that they love it. Students run to class! The program has been trialed in Australian schools as well as schools in the Philippines, Iran and India. It is conducted as holiday workshops at the Australian Nuclear Science and Technology Organisation, the Queensland Museum as well as the World Science Festival. It has attracted wide media interest, including TV, radio and print, and the research data has been presented at prestigious American Education Research Association and Australian Science Education Research Association conferences. Atomic Theory underlies all the other sciences- genetics, electronics, nanotechnology, engineering and astronomy- so an early understanding will set them up for a more successful learning sequence for all their science subjects, and support their mastery of mathematics as well. We also have extension programs that cover Biology, Physics and Astronomy to an equal depth. About Ian Stuart (Email: ian.doug[email protected]): The founder of Atomic School, Ian Stuart, taught Chemistry and Physics for 25 years at senior levels before he realized that his 8-year old son, Tom, could understand Atomic Theory at a much deeper level than he expected. After visiting Tom's class at school, he discovered that his peers could also grasp the abstract scientific concepts, as well as apply it usefully to the real world. Ian then developed a program to teach the advanced concepts of high school Chemistry, Physics and Biology to students 10 years younger than they normally would. He found that this engaged their interest in modern science early, and sustained it through to high school and beyond. It also sets them up for future success in their academic and career paths. Ian has a Bachelor's Degree in Chemistry from the University of Queensland and a Master's degree in Electrochemistry from the University of Melbourne. Connect with Atomic School on social media: http://facebook.com/AtomicSchool http://twitter.com/AtomicSchools http://instagram.com/AtomicSchools Video transcript: Let's do a thought experiment. Imagine a box filled with hydrogen atoms. Like billiard balls on a pool table, atoms actually move, and they do it in straight lines until they hit something … like another hydrogen atom. Oh! See that? They stuck together. They’re not separate hydrogen atoms any more, but a pair of hydrogen atoms moving together. There goes another pair. 4.1 When atoms join up like this, scientists call it a molecule. And they call the join between them a chemical bond. Here comes another hydrogen atom crashing into the hydrogen molecule. But this time it doesn’t stick. Instead it just bounces off. Hydrogen atoms bond once, and that’s it. They’re just like that. Pretty quickly all the hydrogen atoms will collide and pair off into molecules. They will keep hitting each other, but they'll just bounce off. Scientists like to have a shorthand way of writing this molecule thingi. Here’s one way to show it, with the hydrogen symbols joined by a stick to show the chemical bond between the atoms. Another way is to write H2, with the little 2 after the H and a bit lower. A number written this way is called a subscript. What do you think the 2 stands for? It counts the number of hydrogen atoms in the molecule. Easy, heh! So when we have a balloon filled with hydrogen gas, it really contains trillions of trillions of H2 molecules. Let's do another thought experiment. We'll go back to our box filled with hydrogen atoms, but this time put an oxygen atom in there too. When a hydrogen atom crashes into an oxygen atom, they stick together. But wait, when another hydrogen atom hits, it also sticks to the oxygen. What about a third hydrogen atom? No, that’s if for oxygen. It can only make 2 bonds and then it’s done.
Views: 144913 AtomicSchool
Metallic nature | Chemical bonds  | Chemistry | Khan Academy
 
09:28
Properties of metals and how we can explain their properties using electron "sea" model. Watch the next lesson: https://www.khanacademy.org/science/chemistry/chemical-bonds/types-chemical-bonds/v/covalent-networks-metallic-and-ionic-crystals?utm_source=YT&utm_medium=Desc&utm_campaign=chemistry Missed the previous lesson? https://www.khanacademy.org/science/chemistry/chemical-bonds/types-chemical-bonds/v/electronegativity-and-chemical-bonds?utm_source=YT&utm_medium=Desc&utm_campaign=chemistry Chemistry on Khan Academy: Did you know that everything is made out of chemicals? Chemistry is the study of matter: its composition, properties, and reactivity. This material roughly covers a first-year high school or college course, and a good understanding of algebra is helpful. About Khan Academy: Khan Academy offers practice exercises, instructional videos, and a personalized learning dashboard that empower learners to study at their own pace in and outside of the classroom. We tackle math, science, computer programming, history, art history, economics, and more. Our math missions guide learners from kindergarten to calculus using state-of-the-art, adaptive technology that identifies strengths and learning gaps. We've also partnered with institutions like NASA, The Museum of Modern Art, The California Academy of Sciences, and MIT to offer specialized content. For free. For everyone. Forever. #YouCanLearnAnything Subscribe to Khan Academy’s Chemistry channel: https://www.youtube.com/channel/UCyEot66LrwWFEMONvrIBh3A?sub_confirmation=1 Subscribe to Khan Academy: https://www.youtube.com/subscription_center?add_user=khanacademy
Views: 145293 Khan Academy
Chemical Bonding - Ionic vs. Covalent Bonds
 
02:15
This two minute animation describes the Octet Rule and explains the difference between ionic and covalent bonds. Find more free tutorials, videos and readings for the science classroom at ricochetscience.com
Views: 276536 RicochetScience
Covalent networks, metallic crystals, and ionic crystals | Chemistry | Khan Academy
 
09:14
Covalent networks, metallic crystals, and ionic crystals: Some of the strongest molecular structures. Watch the next lesson: https://www.khanacademy.org/science/chemistry/chemical-bonds/copy-of-dot-structures/v/drawing-dot-structures?utm_source=YT&utm_medium=Desc&utm_campaign=chemistry Missed the previous lesson? https://www.khanacademy.org/science/chemistry/chemical-bonds/types-chemical-bonds/v/metallic-nature-trends?utm_source=YT&utm_medium=Desc&utm_campaign=chemistry Chemistry on Khan Academy: Did you know that everything is made out of chemicals? Chemistry is the study of matter: its composition, properties, and reactivity. This material roughly covers a first-year high school or college course, and a good understanding of algebra is helpful. About Khan Academy: Khan Academy offers practice exercises, instructional videos, and a personalized learning dashboard that empower learners to study at their own pace in and outside of the classroom. We tackle math, science, computer programming, history, art history, economics, and more. Our math missions guide learners from kindergarten to calculus using state-of-the-art, adaptive technology that identifies strengths and learning gaps. We've also partnered with institutions like NASA, The Museum of Modern Art, The California Academy of Sciences, and MIT to offer specialized content. For free. For everyone. Forever. #YouCanLearnAnything Subscribe to Khan Academy’s Chemistry channel: https://www.youtube.com/channel/UCyEot66LrwWFEMONvrIBh3A?sub_confirmation=1 Subscribe to Khan Academy: https://www.youtube.com/subscription_center?add_user=khanacademy
Views: 287429 Khan Academy
What are Ionic Bonds?  | The Chemistry Journey | FuseSchool
 
02:55
In this video you'll learn the basics about Ionic Bonds. At Fuse School, teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. Our OER are available free of charge to anyone. Make sure to subscribe - we are going to create 3000 more! The Fuse School is currently running the Chemistry Journey project - a Chemistry Education project by The Fuse School sponsored by Fuse. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Be sure to follow our social media for the latest videos and information! Twitter: https://twitter.com/fuseschool Facebook: https://www.facebook.com/fuseschool Google+: http://www.gplus.to/FuseSchool Youtube: http://www.youtube.com/virtualschooluk Email: [email protected] Website: www.fuseschool.org This video is distributed under a Creative Commons License: Attribution-NonCommercial-NoDerivs CC BY-NC-ND
Naming Ionic and Molecular Compounds | How to Pass Chemistry
 
12:42
Naming compounds have never been so simple! With my strategy and step by step examples, you will be naming compounds like a pro in no time! This video explains every single type of ionic compound rule and covalent compound rule you will see and there are even practice problems to lock in what you just learned. 📗 FREE CHEMISTRY SURVIVAL GUIDE https://melissa.help/freechemguide 🙋‍♀️🙋‍♂️GOT A QUESTION? ASK ME HERE https://melissa.help/me 👉 SHOP MY STEP-BY-STEP CHEMISTRY NOTES👈 https://melissamaribel.com/ -Thermochemistry Notes https://melissa.help/thermonotes -Acids and Bases Notes https://melissa.help/acidbase1notes -Naming Compounds and Acids Notes https://melissa.help/namingnotes -Dimensional Analysis, Significant Figures, and Density Notes https://melissa.help/sigfignotes -Gas Laws Notes https://melissa.help/gaslawsnotes -Stoichiometry Notes https://melissa.help/stoichnotes -Redox Reactions Notes https://melissa.help/redoxnotes -Molarity Notes https://melissa.help/molaritynotes -Limiting Reactants Notes https://melissa.help/limreactnotes -Lewis Structures Notes https://melissa.help/lewisnotes -Kinetics Notes https://melissa.help/kineticsnotes 🧡SHOW YOUR SUPPORT ON PATREON https://www.patreon.com/melissamaribel 👍MELISSA'S FAVORITES ON AMAZON https://www.amazon.com/shop/chemistrywithmelissamaribel --OTHER RESOURCES TO HELP YOU GET THROUGH SCHOOL-- 🙌 This was my go-to homework help when I was in school. Chegg Study is one of my favorites. https://che.gg/melissamaribelstudy 📚 I made the mistake of buying all of my textbooks, I wish I had the option of renting them. Thankfully you do, with Chegg Textbook Rentals. https://che.gg/melissamaribelrentals 💰 If you bought a textbook and don’t want the hassle of selling it, Chegg can do the work for you, with Chegg Buyback. https://che.gg/melissamaribelbuyback 📝 QUICKSTUDY REFERENCE GUIDES ⬇️ 📕 CHEMISTRY BREAKDOWN AND REVIEW https://amzn.to/2t50xWx 📙 CHEMISTRY EQUATIONS AND ANSWERS https://amzn.to/2MPjC88 📘 CHEMISTRY TERMINOLOGY https://amzn.to/2t9cv1o DISCLAIMER: Some links in the description are affiliate links, which means that if you buy from those links, I’ll receive a small commission. This helps support the channel and allows me to continue making videos like this. Thanks for the support! 💁‍♀️ HI I'M MELISSA MARIBEL I help students pass Chemistry. I used to struggle with this subject, so when I finally graduated with a bachelor's degree in Chemistry, I became a tutor so that you wouldn't have to struggle like I did. I know that with the right help, YOU CAN LEARN ANYTHING! 👋 FOLLOW ME Instagram: https://www.instagram.com/hellomelissam/ Facebook: https://www.facebook.com/hellomelissam/ Twitter: https://twitter.com/hellomelissam Practice problems with step by step answers: http://bit.ly/2YGSkX5 TIMESTAMPS 1:13 Naming Strategy 1:53 Ionic Compound Naming Rules 9:49 Covalent Compound Naming Rules Example 11:49 Practice problems ___________________________________________________________________ Music: [China Electro] China-P (Morocco No Copyright music) - https://youtu.be/uDkddvltoUk Music: The Rover - S Strong https://youtu.be/DhBCxKQPHiI ___________________________________________________________________
Views: 378872 Melissa Maribel
Chemical Bonding
 
06:49
Chemical Bonding Though the periodic table has only 118 or so elements, there are obviously more substances in nature than 118 pure elements. This is because atoms can react with one another to form new substances called compounds (see our Chemical Reactions module). Formed when two or more atoms chemically bond together, the resulting compound is unique both chemically and physically from its parent atoms. Let's look at an example. The element sodium is a silver-colored metal that reacts so violently with water that flames are produced when sodium gets wet. The element chlorine is a greenish-colored gas that is so poisonous that it was used as a weapon in World War I. When chemically bonded together, these two dangerous substances form the compound sodium chloride, a compound so safe that we eat it every day - common table salt! In ionic bonding, electrons are completely transferred from one atom to another. In the process of either losing or gaining negatively charged electrons, the reacting atoms form ions. The oppositely charged ions are attracted to each other by electrostatic forces, which are the basis of the ionic bond. Notice that when sodium loses its one valence electron it gets smaller in size, while chlorine grows larger when it gains an additional valence electron. This is typical of the relative sizes of ions to atoms. Positive ions tend to be smaller than their parent atoms while negative ions tend to be larger than their parent. After the reaction takes place, the charged Na+ and Cl- ions are held together by electrostatic forces, thus forming an ionic bond. Ionic compounds share many features in common: •Ionic bonds form between metals and nonmetals. •In naming simple ionic compounds, the metal is always first, the nonmetal second (e.g., sodium chloride). •Ionic compounds dissolve easily in water and other polar solvents. •In solution, ionic compounds easily conduct electricity. •Ionic compounds tend to form crystalline solids with high melting temperatures. Checkout for more information: https://chemistry.tutorvista.com/physical-chemistry/chemical-bonding.html Follow us at: https://www.facebook.com/tutorvista https://twitter.com/TutorVista
Views: 13394 TutorVista
Covalent Nature of Ionic Bonds -Fajan's Rules  - Chemical Bonding And Molecular Structure (Part 11)
 
27:21
Need help in Chemistry? Are you in 11th or 12th grade? Then you shall find these videos useful. Barring 10 videos on "IUPAC Nomenclature" and 8 videos on "Comparing acid base strengths of organic acids", which I made as they were requested by students. I have uploaded videos following the chapters of the NCERT Text book for Class 11 to be followed by class 12. I am making the videos in sequence so You can play the videos from the beginning to do the entire course. I hope you work with your teachers and me and 'kill it' in the final exams - Boards in India or Regents in the USA.. Wishing you all the best!! HAPPY STUDYING!! If you have questions regarding the video, please do write in the comments. I will get back to you as soon as possible.
Views: 6447 Seema Dhawan Arora
Metallic Bond Alloys
 
01:33
Understand metallic bonding, alloys and their properties.
How Ionic Bonds Form (Basic)
 
07:48
A basic description of the transfer of an electron between sodium and chlorine forming the sodium chloride ionic compound.
Views: 41553 BioBunn
4.3 Structure and properties of covalent compounds (SL)
 
02:34
Understandings: Carbon and silicon form giant covalent/network covalent structures. Application and skills: Explanation of the properties of giant covalent compounds in terms of their structures. Explanation of the physical properties of covalent compounds (volatility, electrical conductivity and solubility) in terms of their structure and intermolecular forces.
Views: 4527 Mike Sugiyama Jones
How to tell the difference between ionic, polar and covalent bonds
 
11:34
All bonds are not created equal. Some bonds perfectly share their electrons, and others barely share them at all. A dipole moment is the mathematical expression that describes this disbalance. Watch more of this topic at ► http://bit.ly/28J9JVv Download this PDF: http://bit.ly/28JKWBF GET MORE CLUTCH! VISIT our website for more of the help you need: http://bit.ly/28J9FoC SUBSCRIBE for new videos: http://cltch.us/1axA33X --- LET'S CONNECT! Facebook: http://cltch.us/1JLgiSZ Twitter: http://cltch.us/1NLcKpu Instagram: http://cltch.us/1If5pb7 Google+: http://cltch.us/1E34o85 Clutch Prep = Textbook specific videos to help you pass your toughest science classes.
Views: 5159 Clutch Prep
Ionic Solids, Molecular Solids, Metallic Solids, Network Covalent Solids, & Atomic Solids
 
20:19
This chemistry video tutorial provides a basic introduction into solids. It explains how to classify a solid as ionic solids, molecular solids or atomic solids. There are 3 different types of atomic solids that you need to be familiary with - metallic solids, Group 8A solids, and network covalent solids. Ionic solids are typically made up of metals and nonmetals. Ionic solids contain ions with positive and negative charges. Molecular solids are composed of molecules and have very low melting points. Ionic solids typically have high melting points. Metallic solids are composed of metals with varying melting points. Metallic solids conduct heat and electricity very well. They are ductile and malleable. Group 8A solids which are basically the noble gases have extremely low melting points. Finally, the network atomic solids or network covalent solids have a very high melting point which typically varies with pressure. New Chemistry Video Playlist: https://www.youtube.com/watch?v=bka20Q9TN6M&t=25s&list=PL0o_zxa4K1BWziAvOKdqsMFSB_MyyLAqS&index=1 Access to Premium Videos: https://www.patreon.com/MathScienceTutor Facebook: https://www.facebook.com/MathScienceTutoring/
General Chemistry 1A. Lecture 08. Chemical Bonds.
 
58:37
UCI Chem 1A General Chemistry (Winter 2013) Lec 08. General Chemistry -- Chemical Bonds View the complete course: http://ocw.uci.edu/courses/chem_1a_general_chemistry.html Instructor: Amanda Brindley, Ph.D. License: Creative Commons BY-NC-SA Terms of Use: http://ocw.uci.edu/info. More courses at http://ocw.uci.edu Description: Chem 1A is the first quarter of General Chemistry and covers the following topics: atomic structure; general properties of the elements; covalent, ionic, and metallic bonding; intermolecular forces; mass relationships. General Chemistry (Chem 1A) is part of OpenChem: http://ocw.uci.edu/collections/open_chemistry.html This video is part of a 23-lecture undergraduate-level course titled "General Chemistry" taught at UC Irvine by Amanda Brindley, Ph.D. Recorded March 14, 2013. Index of Topics: 0:01:57 Types of Bonds 0:04:30 Energy of Ionic Bond Formation 0:10:46 Lewis Dot Symbol 0:11:58 Ionic Bonds 0:14:50 Covalent Bonding: Molecular Compounds 0:16:04 General Lewis Structure Guidelines 0:19:11 Non-Octet Breaking Examples 0:32:48 Formal Charges 0:48:37 Breaking the Octet Rule Required attribution: Brindley, Amanda General Chemistry 1A (UCI OpenCourseWare: University of California, Irvine), http://ocw.uci.edu/courses/chem_1a_general_chemistry.html. [Access date]. License: Creative Commons Attribution-ShareAlike 3.0 United States License (http://creativecommons.org/licenses/by-sa/3.0/us/deed.en_US)
Views: 31656 UCI Open
What Are Intermolecular Forces | Chemistry for All | FuseSchool
 
05:19
Learn what intermolecular forces are, the three most common types and the differences between them. An intermolecular force is simply an attractive force between neighbouring molecules. There are three common types of intermolecular force: permanent dipole-dipole forces, hydrogen bonds and van der Waals' forces. All these three forces are very much weaker than ionic or covalent bonds which bind atoms and ions together in elements and compounds. Permanent dipole-dipole forces: A polar molecule is one in which there is a permanent dipole, arising usually because the different atoms in the molecule have different electro-negativities. Hydrogen chloride is a polar molecule as the pair of electrons in the H---Cl bond are nearer the Cl atom because it has a greater electronegativity than the H atom. The two electrons of the covalent bond between the hydrogen and chlorine atoms are nearer the chlorine atom because of its greater electronegativity. Thus there will be an attraction between the chlorine atom of one molecule and the hydrogen atom of a neighbouring molecule. Hydrogen bonds: The second type of intermolecular force is the hydrogen bond. The permanent dipole in a covalent bond between a hydrogen atom and a fluorine, oxygen or nitrogen atom is particularly strong. Thus the attraction between the electron deficient H of one molecule and the lone pair of electrons on a fluorine, oxygen or nitrogen atom of another molecule is much stronger than the permanent dipole-dipole attraction between the two hydrogen chloride molecules. This particular type of dipole-dipole attraction between the electron deficient H of one molecule and the lone pair of electrons on a fluorine, oxygen or nitrogen atom of another molecule is given the special name of hydrogen bond. Even though a hydrogen bond has only about 5% the strength of a covalent bond, it does have significant effects on the physical properties of compounds. Were it not for hydrogen bonds both water and alcohol would be gases at room temperature and pressure. Hydrogen bonds explain the lower volatility of alcohols compared to that of alkanes of similar molecular mass. van der Waals’ forces: van der Waals’ forces are induced dipole-dipole interactions. They arise out of movement of the electrons in the shells.These induced dipole-dipole interactions, called van der Waals’ forces occur in all molecules, whether polar or not, but are the only intermolecular forces between non-polar molecules such as the halogens and the noble gases. As the number of electrons in the molecule increases, so do the van der Waals’ forces. SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. JOIN our platform at www.fuseschool.org This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind FuseSchool. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
4 Ionic Structure and Properties
 
06:44
4th in a series of films exploring the structure and bonding of the different types of material covered in chemistry. Here we look at how the bonding of ionic substances can be used to explain their properties.
Views: 2663 WACE Chem
√√ Classification of Crystals | Bonding and Classification | Chemical Earth | Chemistry
 
14:42
https://www.iitutor.com Crystalline chemical substances can be classified into four categories based on their physical properties. These categories are: ● Metallic crystals ● Ionic crystals ● Covalent network crystals ● Covalent molecular crystals.
Views: 26 iitutor.com
Online Chemistry Course: Chemical Bonding
 
13:01
This online chemistry course video explains chemical bonding. Watch how two hydrogen atoms collide and stick together to make a molecule. See how they collide and chemically bond with oxygen to form water, with nitrogen to form ammonia, and with carbon to form methane. The chemical formula of these substances are explained, and the connection between the microscopic molecules that make up a substance and its macroscopic properties is shown. Also, the difference between an element and a compound is explained. Subscribe to watch more online chemistry courses & science videos: http://www.youtube.com/channel/UCiX8pAYWBppIbtUZTfGnRJw?sub_confirmation=1 About Atomic School: Atomic School supports the teaching of Atomic Theory to primary school & science students. We provide lesson plans, hands-on classroom resources, demonstration equipment, quizzes and a Teacher's Manual to primary school teachers. Animated videos that clearly explain the scientific ideas supports learning by both teachers and students. As a teacher, you don't have to look anywhere else to implement this program. Our work has been verified by science education researchers at the University of Southern Queensland, Dr Jenny Donovan and Dr Carole Haeusler, who confirm that primary students are capable of learning much more complex scientific concepts than previously thought, and crucially, that they love it. Students run to class! The program has been trialed in Australian schools as well as schools in the Philippines, Iran and India. It is conducted as holiday workshops at the Australian Nuclear Science and Technology Organisation, the Queensland Museum as well as the World Science Festival. It has attracted wide media interest, including TV, radio and print, and the research data has been presented at prestigious American Education Research Association and Australian Science Education Research Association conferences. Atomic Theory underlies all the other sciences- genetics, electronics, nanotechnology, engineering and astronomy- so an early understanding will set them up for a more successful learning sequence for all their science subjects, and support their mastery of mathematics as well. We also have extension programs that cover Biology, Physics and Astronomy to an equal depth. About Ian Stuart (Email: [email protected]): The founder of Atomic School, Ian Stuart, taught Chemistry and Physics for 25 years at senior levels before he realized that his 8-year old son, Tom, could understand Atomic Theory at a much deeper level than he expected. After visiting Tom's class at school, he discovered that his peers could also grasp the abstract scientific concepts, as well as apply it usefully to the real world. Ian then developed a program to teach the advanced concepts of high school Chemistry, Physics and Biology to students 10 years younger than they normally would. He found that this engaged their interest in modern science early, and sustained it through to high school and beyond. It also sets them up for future success in their academic and career paths. Ian has a Bachelor's Degree in Chemistry from the University of Queensland and a Master's degree in Electrochemistry from the University of Melbourne. Connect with Atomic School on social media: http://facebook.com/AtomicSchool http://twitter.com/AtomicSchools http://instagram.com/AtomicSchools Video transcript:
Views: 32843 AtomicSchool